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Finite-size effects in the integrable XXZ Heisenberg model 
with arbitrary spin 

Holger Frahm and Nai-Chang Yu 
Department of Physics, University of Virginia, Charlottesville, VA 22901, USA 

Received 8 December 1989 

Abstract. The finite-size effects in the spectrum of the integrable X X Z  Heisenberg chain 
with arbitrary s p i n 3  are studied analytically on the basis of the string hypothesis for bound 
states and numerically by solving the associated Bethe ansatz equations. The finite-size 
corrections to the spectrum and to the low-temperature behaviour of the free energy are 
found to be similar to the universal predictions for conformally invariant theories, although 
the model is, in general, not Lorentz invariant, since it can have an arbitrary number of 
branches for low-energy excitations with different Fermi velocities depending on the value 
of S and the anisotropy parameter y. 

1. Introduction 

In recent years there has been a significant advance in the understanding of the critical 
properties of two-dimensional statistical systems and, equivalently, (1 + 1 )-dimensional 
quantum systems as a consequence of the application of the concept of conformal 
invariance. This concept provides a simple means for the classification of universality 
classes in terms of a single dimensionless number, namely the central charge c of the 
underlying Virasoro algebra. Integrable lattice models in their continuum limit (both 
two-dimensional vertex models [ 13 and the related quantum spin chains [2-41) have 
been widely used to obtain realisations of conformal field theories. The identification 
of the critical continuum theory corresponding to a given lattice model is easily achieved 
by using the predictions of conformal field theory. The central charge c as well as the 
conformal dimensions E , ,  A ,  of the primary fields of the continuum theory determine 
the scaling of the spectra of finite systems. While the spectrum of low-lying excitations 
is gapless at criticality the energy levels of systems of finite length N (we measure 
lengths in units of the lattice spacing) are separated by gaps of order 1/ N. Conformal 
invariance relates the size of these gaps to the central charge and the scaling dimensions 
X ,  = A I  + A L  and spins s, = A ,  -E, of the conformal fields [5-71. The energy E , ( N )  of 
the finite-N ground state and energy E, and momentum P, of low-lying excited states 
scale like 

Eo(N)-N&,= ( l . l a )  

( l . l b )  

2 7  
N 

P, ( N, I + ,  I - )  - Po = 2dsP'F + - ( s  + I +  - I - ) .  ( l . l c )  

0305-4470/90/112115+ 18S03.50 0 1990 IOP Publishing Ltd 2115 



21 16 H Frahm and Nai-Chang Yu 

In (1 .1)  E- is the energy density in the ground state of the infinite system, v and PF 
are the Fermi velocity and momentum, respectively, d and I' 2 0 are integers. Another 
prediction from conformal invariance that has been used to identify the central charge 
for a given continuum theory is the occurrence of a universal term in the low- 
temperature expansion of the free energy [7]: 

nT2 c 

6 u  
F(T)=  F, - - -+o(T~) .  

In addition to the vanishing of mass terms (which leads to scale invariance) a 
conformally invariant field theory has to be Lorentz invariant, i.e. all low-energy 
excitations must have linear dispersion with the same Fermi velocity U in the vicinity 
of the Fermi level. This is manifest in the predictions ( 1 . 1 )  and (1.2). However, there 
exist systems that have linear excitations with different velocities at criticality. One 
such model that has been studied recently [8] is the Hubbard chain away from half 
filling; another large class of such models can be found among the integrable spin-S 
generalisations of the anisotropic X X Z  Heisenberg chain [4,9-113. The Hamiltonian 
of these systems is a polynomial of degree 2 s  in local SU(2) spin operators, the leading 
term given by the familiar S = expression 

For Os A s  1 the system is antiferromagnetic and has massless excitations only. In 
this phase the anisotropy is conveniently parametrised by the real number y with 

A =  COS y. (1.4) 
The standard approach for the construction of the integrable X X Z  chain for given 
spin-S is the quantum inverse scattering method. A physical (i.e. Hermitian) Hamil- 
tonian is obtained if the anisotropy parameter y is in either one of the allowed regions 
characterised by the following inequalities [4]: 

cos y(2S+ 1)  >cos yn 

cos y(2S + 1 )  < cos yn 

for n = 2 s  - 1,2S -3 ,  . . . , -2S+ 1 

for n = 2 S - l , 2 S - 3  , . . . ,  - 2 S + l .  (1.5) 

(These conditions are equivalent to the existence of certain bound states, namely strings 
of length (2S+ l ) ,  see section 2 below). 

Kirillov and Reshetikhin have solved this model for arbitrary spin in the allowed 
regions (1.5) for the anisotropy. Using standard Bethe ansatz techniques they found 
for the leading term in a low-temperature expansion of the bulk free energy [ l l ]  

nT2 c 

6 , U, 
F (  T) = Fo-- C '+ O( T 2 ) .  

Here the U, are the Fermi velocities for the different branches of low-energy excitations 
and c, = 3 k , / (  k, + 2 )  with certain positive integers ki related to the continued fraction 
expansion of the parameter y. While the Fermi velocities U, are continuous functions 
of the anisotropy the set of numbers { c l }  does not change in any of the regions allowed 
by (1.5). 

For anisotropies in one of the intervals 

7T k 
k < - < k + -  

Y 2 s - k  (1.7) 



Finite-size efects in the XXZ Heisenberg model 2117 

with k and 2S/ k integer there exists a single Fermi velocity only and the sum in (1.6) 
reduces to one term [4]. In this case the theory is conformally invariant, from (1.2) 
the central charge is found to be c = 3k/ (k+2) .  Finite-size scaling methods have been 
applied [3,4] to identify the corresponding continuum field theory as a semidirect 
product of a Gaussian [12] and a Z ( k )  parafermion model [13]. For S s 3  all the 
regions allowed by the inequalities (1.5) are of the form (1.7). For larger S, however, 
there exist allowed intervals of anisotropy where more than one Fermi velocity exists. 
In these intervals the expression (1.6) for the free energy can be thought of as a 
generalisation of the conformal result (1.2) to the case of not Lorentz invariant critical 
theories. The question arises whether similar generalisations of (l.l),  i.e. a universal 
tower structure in the spectra of finite systems similar to the one existing in conformally 
invariant theories, can be found in the higher-spin XXZ chains with more than one 
Fermi velocity. 

In the present work we address this question by investigating the finite-size scaling 
properties of these models both analytically and numerically. Our paper is organised 
as follows. In the next section we review the Bethe ansatz analysis and the construction 
of the ground state for the infinite chain [4,9-lo]. In section 3 we use the techniques 
introduced by Woynarovich et a1 [ 141 (for earlier work using similar methods see also 
[ 151) to obtain analytical expressions for the finite-size corrections to the energies of 
the ground state and low-lying excitations. The results do indeed indicate how (1.1) 
have to be generalised to describe the spectra of finite, not Lorentz invariant theories: 
just as with the low-temperature behaviour of the free energy. the scaling of the ground 
state energy is determined by a set of y-independent numbers E,, which seems to 
indicate a composite continuum theory made up of several independent fields. The 
scaling of excited states, however, shows that this is not true: the generalisation of the 
X ,  in (1.1 b )  contains contributions with different velocities U,. 

A drawback in this approach is that the E, determining the scaling of the ground-state 
energy are all found to be unity which, in general, does not agree with the c, obtained 
from the low-temperature expansion of the free energy (equation (1.6)). In the Lorentz 
invariant, and hence conformal, regions (1.7) the scaling dimensions X, derived here 
are the contributions of the Gaussian constituent of the continuum field theory only, 
the contributions from the parafermionic Z( k )  sector are missing. This is a well known 
shortcoming of this method for the analytical calculation of spectra of finite chains 
[3]: it is based on the string hypothesis which assumes a certain structure for the bound 
states (see below). This hypothesis does give the right results in the thermodynamic 
limit N + 00 (in which (1.6) has been derived), but is known to neglect certain finite-size 
effects [16,17]-hence the prediction for the E, and the energies of excited states in 
the finite chain is only of limited value. Nevertheless, the analytical results obtained 
this way can be used as a basis for our analysis of numerical finite-size data in section 
4 where we investigate the simplest system in this class of spin chains with more than 
one branch of low-energy excitations, namely the S = chain with anisotropies in the 
interval 2 < ( T /  y )  < 3. As in the conformally invariant cases (1.7) we find that the 
discrepancy between the exact numerical results and the analytical prediction based 
on the string assumption can be understood in terms of contributions of Z(k , )  para- 
fermion operators. 

In fact, it appears that if one formally sets all the Fermi velocities U, to a common 
value v-such that the theory is conformally invariant in spite of the existence of 
different branches of low-energy excitations-the continuum theory corresponding to 
the s p i n 3  XXZ chain with free energy (1.6) can be interpreted as a multicomponent 
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model with constituents being products of Gaussian and Z (  k i )  parafermion models. 
Similar multicomponent conformal field theories with purely Gaussian constituents 
have been found before in the investigation of q-state vertex models [18] and nested 
Bethe ansatz models [ 19,201. 

2. The ground state of the infinite chain 

Eigenstates of the spin-S X X Z  chain with anisotropy parameter y are characterised 
by the solutions {A,} of the Bethe ansatz equations [4,9-lo]: 

(2.1) 
( sinh[+y(A, + i2S)] ) = n (sinh[$?’(A~-h,+2i)l 

sinh[ty(A, - i2s)]  k # ,  sinh[$y(A, -hk -2i)]  

A given eigenstate I A l ,  . . . , A M )  has total magnetisation (2, Si) = (SN - M ) .  The 
energy and momentum of a state corresponding to a solution { A k }  of (2.1) are 

P = - i  l ~ ~ ( t % ) ( - i y ) / [ a ~ ( - i y ) ] ~ )  = 2 c  tan-’(tanh(+yAk) cot(yS)). (2.3) 
k 

In the thermodynamic limit we consider state characterised by M roots Ak with 
M /  N fixed, 0 s M /  N s S and N + 00. In this limit the solutions of the Bethe ansatz 
equations (2.1) are known to be arranged in bound states, characterised by uniformly 
spaced sets of complex A,, so-called strings. For large but finite N a string of length 
n and parity v, = * 1 is a group of n roots A, arranged like (1 s k s n): 

Here the real number AY is the string’s centre, 8 k  = (a,-,)* are corrections that vanish 
for the infinite system, and v, = exp(i?r[2Sy/r]) is the spin parity ([XI denotes the 
integer part of x). 

The possible values of the string length and the corresponding parity depend on 
the value of the anisotropy y. A construction of the allowed values of n and v, was 
given by Takahashi and Suzuki 1211. For a given value of y they introduced the 
following sequences of real numbers pI and integers b,, y , ,  m,: 

y - ,  = o  yo= 1 y , =  bo Y!+l = y,-I + b,Y, (2.56) 

m o = O  m, = bo m,+,  = m, + b,. ( 2 . 5 ~ )  

In (2.5) the b, are related to the continued fraction expansion of p o :  

(2.6a) 

(2.66) 
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With these definitions they found that the lengths and parities of the bound states (2.4) 
are given by the Takahashi numbers and related parities: 

( 2 . 7 ~ )  nj = ~ i - l +  ( j  - mt ) ~ i  m, s.i < M , + ~  

(2.7b) 

It can be shown that the set of inequalities (1 .5)  is equivalent to the statement that 
2 s  + 1 is one of the Takahashi numbers (2.7). 

In the regions of anisotropy allowed by (1.5) all the roots of the Bethe ansatz 
equations (2.1) are arranged in string configurations (2.4). Neglecting the finite-size 
corrections &,this allows us to write down equations for the centres A Y ’  of the nj-strings: 

Here Mk is the number of n,-strings, the J:” are integers (or half-odd integers), and 
the functions Q , , ~  and Ojk are given by 

( 2 . 9 ~ )  

(2.96) 

where 

2 v tan-’[ (cot( ny/2))” tanh( yA /2)] if nlpoE Z 
if nip, E Z 

f ( A :  n, v )  = 

( 2 . 9 ~ )  

The energy of a given solution of the string equations (2.8) can be obtained from (2.2) 
to be 

M h  

E =I &:”(A\”) 
I i = l  

(2.10) 

where 

is the bare energy of the nj-strings. The momentum of the state {A;’’} is found to be 

(2.12) 

In the thermodynamic limit N +  Q3 one introduces particle and hole densities p j ( A ) ,  
pjh(A) of nj-strings [22]. These densities are determined by the integral equations 

a j , z S ( A )  = (-l)r(J’(P:(A) + P j ( A ) ) + C  q k  * P k ( A )  (2.13) 
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where the integer r ( j )  is the Takahashi sector corresponding to the n,-string, namely 
m r ( j l s j <  mr( , )+ l  in (2.7a), a,,25(A) is defined in (2.11) and 

The symbol a*6(A) denotes the convolution 
+U) 

a * 6 ( A )  = d p  a(A  - p ) b ( p ) .  
--a^ 

(2.14) 

(2.15) 

The ground state of the model is defined in terms of the solution of the integral 
equation for the dressed energies E, of the n,-strings: 

4poa,,,,(A ) + E:( A ) + E;(  A ) + (- l ) r ( k )  q k  * E L (  A )  = 0. (2.16) 

Here E; (  A )  are the positive and negative parts of the functions &, (A) .  The lowest-energy 
state is obtained by filling all the negative energy levels, i.e. it corresponds to a filled 
Dirac sea (the Dirac sea consists of all strings for which &,-(A) # 0). For zero magnetic 
field the &,(A) are either strictly negative ( r ( j )  has to be even for the sea strings) or 
strictly positive (for which r ( j )  has to be odd), or they vanish identically [4, 111. 

Kirillov and Reshetikhin [ I l l  have solved the set of integral equations (2.16) for 
any y such that ( 1  S )  are satisfied. Their solution depends non-trivially on the Takahashi 
sector in which the Takahashi number (2S+ 1 )  is found (the existence of a Takahashi 
number ( 2 S +  1 )  is guaranteed in the allowed regions ( l S ) ) ,  i.e. the integer r in 

for m, s U < m,,, . (2.17) 

Note that r is a function of both the spin-S and the anisotropy y = r / p 0 .  The 
ground-state configuration consists of filled negative energy bands of jo-strings 
where [4] 

n, = 2 s  + 1 

(2.18) 
} if r even. 

{ Im.' - 1) if u = m, 
m,,u-1} if u > m ,  { m * ,  m 4 , .  . . , mr-2 

{ j o }  = 

The bands with positive energy (labelled by Kirillov and Reshetikhin as 'breathers' in 
analogy to the sine-Gordon system) are: 

{ J :  m2,-1 S J  < m 2 , ;  2i s r} if u = m ,  
if U > m, * 

(2.19) 

All other strings have zero energy. Despite this apparently very complicated depen- 
dence of the ground-state configuration on the anisotropy it can be shown that the set 
of string lengths {no= n J j  E { j , } }  does not change within any of the intervals of 
anisotropy allowed by (1.5) [4]. 

There are no massive excitations, the low-lying excitations have linear dispersion 
with ve!ocities given by the Fermi velocities of the filled bands: 

{ j l } =  { { j :  m, , - ,  G j <  m 2 , ;  2 i s  r + l j  

(2.20) 
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3. The energy of the finite chain 

To obtain finite-size corrections to the low-lying states of the X X Z  spin chain in a 
given allowed region of the anisotropy we start by considering Dirac seas of the strings 
which are present in the infinite-N ground state (2.18) only. For such a state we choose 
the quantum numbers J!J) in the string equations (2.8) as follows: for j e  {j,} let 
J: =iM,  mod 1 such that 

J: - J,- = M, J:+JJ-=-2DJ (3.1) 

and further let Ji” take on all values f ( M J  + 1) mod 1 between JT and J,-. This 
corresponds to a Dirac sea of n,-strings with MJ particles, D, of them moved from the 
left Fermi point to the right one. The effect of holes in these seas near the Fermi points 
and of excitations of strings not present in the ground state can be easily included later. 

Following Woynarovich et a1 [ 141, we introduce functions 

( 3 . 2 ~ )  

By definition, z ~ , ~  fulfils 

(3.3) 

To obtain an integral equation for the P,,~ we make use of the Euler-Maclaurin 
summation formula: 

where j k  stands for an integral with boundaries A t .  These boundaries are defined by 
zj,.,(A:) = J;/ N. Application of this formula to (3.2) yields an integral equation for 
P j , N  ( A  1: 

Here A’ are determined by 

The solution of the integral equation (3.5) can be written formally as 

(3.5) 

(3 .6a )  

(3.66) 

(3.7) 
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where pj(AIA*) and fl;k(A) are defined by 
r 

fs ( A ) = * T : k  ( A - A - J d P q m  ( A - P If: k (  P 1. ( 3 . 8 b )  

(Note that pJ(AIA*) is actually the density of the infinite chain as defined by (2.13) 
for given values of A*.) 

Application of the Euler-Maclaurin summation formula (3.4) to the expression 
(2.10) for the energy gives 

m m  

(3.9) 
7T 

E = NE(M,/N, D,/N)--L U, 

where uj are the Fermi velocities (2.20) of the nj-strings and 

6 N  j 

e (M, /N ,Dj /N)=Z [ dA ~:')(h)p~(AlA*). 
j j  

(3.10) 

In (3.9) we made use of the fact, that p j ( A I A z )  differs from p j , , ( A )  by terms of order 
1/N2 only, and that 

(3.11) 

which can be seen by comparing the formal solutions of (3.8b) for f; and of (2.16) 
for the dressed energies in terms of Neumann's series. 

In the thermodynamic limit N + CO with pj = Mi/ N, 8, = dJ/ N kept finite E ( P ,  8)  
is the energy density of the infinite system. In this limit the ground state is obtained 
by minimising ~ ( p ,  8 )  with respect to p and 6 or, equivalently, to A*. This condition 
gives the following conditions: 

= * E ,  (AT )p, (A: I A*) (3.12) 

where &, (A)  are the dressed energies (2.16) of the n,-strings. Hence, A i  for the ground 
state are defined by the condition that the dressed energies vanish at the Fermi points. 
From symmetry one has A: = *Ao. Our results for the infinite chain in section 2 show 
that we have here A,,o = CO for all j. With (3.12) we can expand E to second order in 
A ' r A o .  Denoting the minimal value of E as E = ,  we find 

E ( A * )  = c v,{[p,(A,,ol*Ao)(A: - A , , ~ ) 1 2 + [ ~ , ( - A , , ~ ~ * A ~ ) ( A ~ + A J . ~ ) 1 2 ~  (3*13) 
J 

where U, are again the Fermi velocities (2.20) of the nj-strings. 
Finally we have to express the result (3.13) for the energy in terms of the deviation 

of the numbers M, and 0, from their ground state values. This amounts to calculation 
of the Jacobian of the transformation between the A; and the p,, S j .  From (3.6) we 
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find (again we can replace P ~ , ~ ( A )  by p,(AIA*) within our accuracy since the A" have 
to be calculated to order 1/ N only) 

( 3 . 1 4 ~ )  

(3.14b) 

The matrix 2 is defined as Z,k = (,k(.\k,O) where ( ( A )  is the dressed charge matrix 
[ 6 , 8 , 2 0 , 2 3 , 2 4 ]  which is the solution of the following set of integral equations: 

(3.15) 

Although it is not possible to solve these equations in general, it is shown in the 
appendix that the matrix Z appearing in (3.14) satisfies the following relation for large 
values of the A: 

(3.16) 

With (3.14) we can rewrite the expansion (3.13) of ~ ( p ,  8 )  as 

~ ( p ,  6)  2 ~,+271(am'(~-')'~(~-')m+d'~~~~d) (3.17) 

where ml = pl -P,,~, dj = 8, and V =  diag(u,, v 2 ,  . . . , U,,). 

(to order 1/N) 
Taking (3.9) and (3.17), we obtain for the ground state energy of the finite chain 

71 
Eo( N) - NE,= --Z U,. (3.18) 

6N j 

This can be interpreted as the generalisation of the relation (1.1) for the scaling of the 
ground state energy to critical theories with different Fermi velocities and c j=  1 for 
all j .  

For excited states of the type considered here the energy gaps scale as 

E N  ( Mi, Dj)  - E,( N) = ($( M - Mo)'(Z-')' V ( Z - ' ) (  M - MO) + DTZVZTD).  (3.19) N 

The inclusion of particle-hole-like excitations as well as of strings with length other 
than those present in the ground state configuration (2.18) modifies the densities (3.7) 
by terms of order 1/ N. Consideration of particle-hole pairs near the Fermi points of 
the Dirac sea modifies (3.19) to [8, 141 

E,(Mj ,  o j , I ; ) - E o ( N )  

= 2 [ $(M - M o ) T ( Z - ' ) T V ( Z - ' ) ( M  - M O )  
N 

I 
+ D'ZVZ'D + U, ( I; + I;) (3.20) 
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where 1; (I,:) are non-negative integers describing excitations in the vicinity of the 
right (left) Fermi point of the j-strings, respectively. The momentum of this state is 
found to be 

P = -  M . D + C ( I J - I , - )  . 
2 T (  N J ) (3.21) 

Excitation of an n,-string with a il { j,} can be included in the above analysis by 
replacing a,,zs by a,,2s - N in (3.5). As an example, we add an n,,-string a il { j , }  
(i.e. a string with vanishing dressed energy) at A = 0 to the state with D, = 0. In the 
system considered here, namely one with A: = *E, the leading finite-size correction 
to the energy is again given by (3.19) but with MO shifted 

M > , ~ ) = M , , O + ~ ( l + j - ~ d p  k T ( p ) ) l  j r  -cc d p  T k a ( p L ) *  (3.22) 

(The inverse has to be taken in the space with j ,  k E {j,}). 
Just as with the N-dependence of the ground state energy (3.18), the finite-size 

corrections (3.20) to the energies of excited states can be interpreted as being generated 
by suitable generalisations of the primary operators in a conformal Gaussian model 
[12] with coupling constant KX. These have scaling dimensions 

(3.23) 

Results similar to (3.20) have be obtained earlier for different systems by Izergin et a1 
[20] and by Woynarovich [8]. It generalises the findings of de Vega [18] for q-state 
vertex models and Suzuki [19] for nested Bethe ansatz models with only one Fermi 
velocity uj = U, as can be seen by using the relation (3.16) for the matrix Z. 

This derivation of the finite-size corrections to the spectrum relies on the accuracy 
of the string hypothesis (2.4). It is well known, however, that the positions of the 
single roots A;") can differ from the ones predicted by (2.4) by terms of 1/N rather 
that exp(-SN) [16,17]. Nevertheless, it has been found in previous work on the 
higher-spin X X Z  chains with a single Fermi velocity [3] that the dependence of the 
scaling dimensions on the anisotropy is predicted correctly by this approach, the true 
values differing from (3.20) by constant terms only. Furthermore, these constant terms 
could be attributed to operators of a Z( k )  parafermionic theory, and hence could take 
certain discrete values only. We show below that a similar behaviour is true in the 
multicomponent case considered here and use (3.20) as a starting point to obtain the 
corrections to the operator dimensions arising from the 1/ N deviations from the string 
assumption. 

4. Numerical results for the S =$ chain with two Dirac seas 

The simplest of the spin chain models considered here which has more than one Fermi 
velocity is found to be the chain with S = in the allowed interval 

;< T/ y < 3. (4.1) 

From (2.18) we find that the ground state of the infinite chain is a sea of 2- and 5-strings 
with positive and negative parity, respectively, in the entire interval. The integral 
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equations (2.13) for the ground-state densities are solved by Fourier transformation. 
This leads to a linear system of equations for the transforms of the densities: 

( a j k +  q k ( W ) ) P k ( w )  = a j , 2 S ( w )  (4.2) 
with (remember that pa = T /  y )  

sinh( po - 2)w cosh'w 
sinh(pow ) 

sinh(2po- 5)w cosh'w 
sinh( pow ) 

1 +  T22(w)=4 

T25 ( ) = r52 ( 0 ) = 4 

sinh(2po-5)w 
sinh( p o w )  

1 + T 5 5 ( w )  = 2 [ ~ 0 ~ h ( p o - 5 ) w + 4  cosh (p0-2 )~  cosh U]. 

The resulting Fourier transforms of the densities are 

cosh(8 -3po)w 
pz(w)'2 cosh w cosh(?-p,)w 

(3 .3a )  

(4.3b) 

(4.3c) 

(4.4a) 

1 
(4.46) 

p 5 ( w )  = 2 cosh(3 -p0)w 

(For sake a clarity we use the string lengths nj instead of the Takahashi indices j to 
label the components of T, p etc in this section.) p, (w = 0) =+, hence the ground state 
of the finite-N spin chain is a configuration of N / 2  2-strings and N / 2  5-strings if 
N is even. (For odd N the ground state configuration is different, this is an example 
of the non-analytic N dependence of finite-size properties [ 141.) The energy density 
of the ground state is 

1 
cosh( pa - 3)w sinh( p o w )  

tX .-=-'I dw (cosh(8 -3po)w sinh(3po-7)w 
y 

+~sinh(2po-5)w[l+2 cosh 20+4cosh(2po-5)w cosh U]}. (4.5) 
The other string lengths that are allowed from (2.7) in the entire interval (4.1) are 1+, 
1- and 3' (superscripts indicate the corresponding parity). Strings of length n 2 8 
exist, too, but their existence is restricted to subsets of the interval (4.1). The ground 
state densities of these strings vanish; their hole densities are found to be 

P:,+(w) = 0 ( 4 . 6 ~ )  

cosh(8 - 3po)U 
cosh( 3 -PO) 

for pa < $ 

1/(2cosh(w/3) for po=s  8 P:(w)  = 

(4.6 b) 

(4.612) 

for Po>:. 
The Fermi velocities of the two Dirac seas are found from the asymptotics of P ~ , ~ ( A )  
as A +*too: 

(4.7) 
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The leading term in the low-temperature expansion of the free energy of the S = X X Z  
chain with anisotropies in the interval (4.1) can be found from the results of Kirillov 
and Reshetikhin [ 111 (note that their ground state configuration is not correct if (+ = m, 
in (2.17), (2.18) [4]. This difference, however, can be included in their final result for 
the free energy in a straightforward way): 

7rT2 3 1 1 
F ( T ) = F o - -  --+- + O ( T 2 ) .  

6 (2 v2 U,> 
(4.8) 

Using a Newton-type method, we have solved the Bethe ansatz equations (2.1) for 
small systems numerically. The results allow us to compare the predictions (3.18) and 
(3.20) from the string hypothesis for the scaling behaviour with the exact numerical 
values. The results for the ground state energy of finite lattices indicate the following 
for the scaling of Eo with N (see table 1):  

7r 
Eo( N) - NE,= -- (tu, + us) + o( +) 6 N  (4.9) 

Both (4.8) and (4.9) indicate that the critical field theory corresponding to this spin 
chain in the continuum limit is a not Lorentz invariant model with sectors labelled by 
c2 = and cs = 1. This result does not agree with the analytical prediction (3.18) of 
c2 = c5 = 1. However, as mentioned above, this is a consequence of the usage of the 
string hypothesis (2.4) for the derivation of (3.18). Analysing our numerical data, we 
find indeed that the individual roots in 5-strings approach the values (2.4) exponentially 
fast with N, while the ones in 2-strings are described by (2.4) to order 1 / N  only (see 
table 2) .  

Table 1. Finite-size scaling data - ( 6 N / n ) ( E 0 ( N ) - N c e )  for the ground state energy of 
the S = 3 chain with different values of the anisotropy in the interval < (n/ y )  < 3. Also 
shown are the VBS extrapolations (see [25]) and the conjecture (4.9). 

x 14 _ - -  n 11 - _ = -  n 8  - - _  IT 13 _ - _  n 51 - _ - _  N 
y-20  Y 5  Y-3 Y 4  Y 5  

4 
8 

12 
16 
20 
24 

Extrapolated 
Conjectured 

8.751 56 
9.259 48 
9.401 43 
9.444 92 
9.462 87 
9.472 06 

9.474 
9.491 67 

10.706 83 
10.485 06 
10.438 70 
10.422 03 
10.414 22 
10.409 94 

10.400 
10.4 

12.605 73 15.808 87 
12.154 82 15.328 21 
12.069 30 15.220 43 
12.039 18 15.180 26 
12.025 18 15.161 09 
12.017 54 15.15045 

18.800 35 
18.416 25 
18.318 43 
18.275 06 
18.252 55 
18.239 31 

12.000 15.125 
12 15.125 

18.203 
18.2 

To compare numerical finite-size data for excited states with the analytical prediction 
(3.20) we have to calculate the matrix 2 first. Although the 2 x 2  matrix Z is not 
uniquely determined by (3.16), this relation is sufficient to obtain 2 from our numerical 
data. From (4.3) we find 

2 ( ~ - 2 y )  2 ( 2 ~ - 5 y )  ( 1 + 2 ( 2 ~ - 5 y )  5 ( 2 ~ - 5 y )  
d p T( p ) ) = ( 1 + T (  w = 0)) = - (4.10a) 
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Table 2. Deviations of the positions of individual roots from the string hypothesis (2.4) 
for the ground state with y = 3 n / 8  as a function of N .  Sy, is the difference of the imaginary 
part of the roots of the 2-string closest to the real axis and the string-hypothesis value 
(namely 1). 6y5 is the equivalent quantity for the root of the 5-string closest to the real 
axis with imaginary part from (2.4). 

N NSY2 SY 5 

4 0.356 030 05 0.003 942 50 
8 0.305 019 61 0.000 21 1 84 

12 0.268 032 90 0.000 018 88 
16 0.258 729 30 0.000 001 96 
20 0.254 554 50 0.000 000 22 
24 0.252 198 43 0.000 000 03 

We also need the inverse of this matrix 

-1  
( 1  + T ( w  = O)) - I  =- 

( ~ - 2 y ) / ( 2 ~ - 5 ~ )  
(4.1 Ob) 

Using (3.16), (3.19) and from our numerical results for the finite-size scaling of the 
states with (AM,, AMs) chosen as ( - 1 , O )  and (0, -1) we can calculate the matrix 
elements of 2 - I .  For example, a numerical value for (Z-1)22 is given by 

l l - 2 y  2 7  
(4.11) 

where 6E is ( E ( - l , o ) ( N ) - E o ( N ) ) .  Our numerical results (see table 3) indicate that 
Z-', and hence 2, both have the following structure: 

z = ( ;  d"). (4.12) 

With this additional information, the non-zero elements of 2 can be calculated from 
(3.16) with (4.10) to be 

1 2 1 r - 4 ~  I i 2  

2 2 r - 5 ~  

1/2 l l - 5 y  d = - ( - )  . 

Z- '  is of the same form with a, b, d replaced by 6, 6, d 
2 ( 2 ~  - 5y) 6= 
J d n  -2y)  l l - 4 y  

(4.13) 

(4.14) 

(These values have been used as the conjecture with which we compare our numerical 
results in table 3.) 

This expression for the dressed charge matrix allows us to identify the finite-size 
corrections in other excited states. A consistency check is obtained by analysing the 
state with (AM2, AM5) = ( - 1 ,  - 1 ) .  Equation (3.19) predicts 

(4.15) 

In table 4 this prediction is compared with our numerical data for different values of 
the anisotropy y and N up to 20. 
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Table 3. Elements ,of 2-' from !nite-lattice calculations for.different values of the 
anisotropy y. ( a )  ( ( Z - ' ) 2 2 ) 2 ,  ( b )  ( ( Z - ' ) J 2 ,  ( c )  ((z-')55)*, ( d )  ( ( z - ' ) 2 5 ) 2 .  Theconjectures 
are given by (4.14). (Entries marked # #  could not be calculated due to numerical 
instabilities.) 

71 11 _ = -  x 8  _ - _  x 13 --- - 
Y 5  Y-3 Y 4  

(4  N 

0.914 520 1.011 885 1.131 513 4 
8 0.920 700 1.001 608 1.098 047 

12 0.921 992 1.000 628 1.093 828 
16 0.922 459 1.000 337 1.092 511 

# #  1.000211 1.091 924 20 
Extrapolated 0.923 1 .ooo 1.09 1 
Conjectured 0.923 077 1 .o 1.090 909 

x 14 

Y 5  
_ = _  

1.202 532 
1.154 975 
1.157695 
1.145 489 
1.144 519 
1.143 
1.142 857 

x 8  - - _  ir 13 _ = _  
Y 5  Y -3  

x 11 --- - 
Y 4  

IT 14 _-_  - 
Y 5  

4 0.008 557 -0.01 1 885 -0.040 604 -0.059 675 
8 0.002 306 -0.001 608 -0.007 137 -0.012 118 

12 0.001 768 -0.000 628 -0.002 919 -0.014 110 
16 0.000 617 -0.000 337 -0.001 602 -0.002 632 
20 # #  -0.000 21 1 -0.001 015 -0.001 932 
Extrapolated 0.006 -0.000 07 -0.000 3 -0.000 04 
Conjectured 0 0 0 0 

1.380 12 4 0.765 93 1.059 8 1.295 9 
8 0.690 50 1.015 3 1.321 7 # #  

12 0.677 20 1.006 8 1.327 4 1.473 1 
16 0.672 58 1.003 8 1.329 7 1.481 8 
Extrapolated 0.670 1.002 1.330 
Conjectured 0.666 667 1 .O 1.333 333 1.5 

x 14 _ = _  x 11 - -_  - x 8  - - _  x 13 _ = _  
Y 5  Y-3 Y 4  Y 5  

(4 N 

4 0.003 30 0.190 2 0.522 28 0.762 74 
8 0.078 73 0.234 7 0.496 37 ##  

12 0.088 73 0.243 2 0.490 78 0.669 86 
16 0.093 35 0.246 2 0.488 48 0.661 06 
Extrapolated 0.097 0.248 0.488 
Conjectured 0.102 564 0.25 0.484 848 0.642 857 
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Table 4. Finite-size scaling of the gap between the ground state and the excited state with 
AM, = AM5 = - 1 for different values of the anisotropy. The numerical results are compared 
to the prediction (4.15). 

N 
% - 8  _ - _  ?r 13 _-_  - 

Y 5  Y - 3  

77 1 1  _ - _  - 
Y 4  

%- 14 _ - _  - 
Y 5  

4 
8 
12 
16 
20 
Extrapolated 
Conjectured 

2.272 103 3.649 760 
2.177 193 3.533 909 
2.161 722 3.514459 
2.156488 3.507 914 

3.504 960 
2.157 3.501 
2.15 3.5 

5.986 202 
5.806 842 
5.773 071 
5.761 917 
5.757 060 
5.752 
5.75 

8.027 459 
7.766 289 
7.714418 
7.699 535 
7.694 477 
7.691 
7.7 

The finite-size scaling properties in all of the excited states considered above as 
compared to the finite-N ground state are described correctly by the prediction (3.20) 
based on the string hypothesis, despite the different value of c 2 .  This fact has been 
observed earlier in the investigation of higher-spin X X Z  chains with a single Fermi 
velocity [3,4]: the operators identified from the scaling behaviour of states consisting 
of sea strings only were found to be composite operators formed by the product of a 
Gaussian-type operator and the identity operator in the parafermionic sector of this 
model, the latter having zero dimension. To find a non-zero contribution from the 
parafermionic sector, one has to consider states with strings other than the sza strings 
present. In the following we shall investigate the scaling of energies of states with a 
single l+-string added at A = 0. As mentioned in section 3, this amounts to a shift 
(3.22) of MO in (3.20). The shift is given by 

6 M o = ( 1 + T ( w = 0 ) ) - ’  (;;;: I :;)* (4.16) 

In the interval (4.1) we have 

T2](W =0)=2(?7-2y)/Ir  T,,(w = 0) = 2(2T - 5 y)/7r (4.17) 

and hence 6Mo = (i, 0). From (3.20) we obtain the following predictions for the 
finite-size corrections to the energies of states with N / 2  - 1 2-strings and N / 2  5-strings: 

and with M2 = N/2, M5 = N / 2  - 1: 

(4.18) 

(4.19) 

Here X ,  is the contribution of the continuum field theory that gives rise to the change 
of c2 from the Gaussian value 1 to the one found in (4.8) and (4.9), namely From 
the known conformal properties for the higher-spin X X Z  chains with a single Fermi 
velocity, we conjecture that this is again the Z(2) or Ising model. Hence, we expect 
to find X 2  = A 2 + A 2  where A 2 ,  A2 are the operator dimensions of the Ising model. 

A 2 , A 2 = 0 , & ,  1. (4.20) 
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Table 5. Finite-size scaling of the gap between the ground state and the excited states with 
an additional 1-string at A = O  and ( A M 2 ,  A M 5 )  chosen as ( a )  (-1,O) and ( b )  (0, -1) for 
different values of the anisotropy. The numerical results are compared with the predictions 
( a )  (4.18) and ( b )  (4.19) with X , = g .  

x 8  x 13 
Y 5  Y 3  

_ = _  _ = _  

4 0.497 404 0.513 422 0.509 362 0.479 579 
8 0.484 820 0.509 077 0.536 034 0.546 058 

12 0.481 177 0.506 143 0.536 398 0.552 689 
0.504 610 0.535 696 0.553 572 16 0.479 468 

0.535 062 0.553 531 20 0.478 516 0.503 683 
Extrapolated 0.476 0.502 0.536 0.554 
Conjectured 0.475 0.5 0.531 25 0.55 

x 11 _ = _  
Y 4  

x 14 _ - _  - 
Y 5  

4 4.027 632 5.429 828 
8 4.025 642 5.550 635 

12 4.027 458 5.989 890 
16 4.028 619 5.608 099 
20 4.029 340 5.618 445 
Extrapolated 4.031 5.642 
Conjectured 4.031 25 5.65 

Comparison of our numerical results shows that the scaling of the energy gaps for 
these states is indeed described accurately by the predictions (4.18), (4.19) with X 2  = 
(see table 5 ) .  
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Nore added in prooj Since the submission of our original manuscript we managed to find the Wiener-Hopf 
factorisation (A6) of the kernel 1 + T ( w )  of the internal equations in section 4 (e.g. (4.2)). It is of the form 

a ( - w )  b ( - w )  
0 d ( - w )  

G - ( w )  = 

( G + ( w )  is given by (A7)) with a ( - w ) ,  b ( - w ) ,  d ( - w )  analytic functions for Im(w)<O given by 

a ( w ) a ( - w )  = sinh(pow)/(4 sinh(po-2)w cosh2w) 

d ( w ) d ( - w )  = sinh( po -2)w/(2 sinh(2po- S)w cosh(p, - 3)w) 

b ( w ) b ( - w )  = sinh(2po- 5)w/(2 s inh(po-2)o cosh(po-3)w) 

(the factorisation of these equations in terms of gamma functions is straightforward). The analytical prediction 
(A9) for the elements of the dressed charge matrix agrees with our numerical results (equations (4.12), 
(4.13) and 4.14)). 
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Appendix. The dressed charge matrix 

For zero magnetic field, the A, either vanish or are infinite. In this case (3.15) can be 
solved by Fourier transformation, giving (in the subspace of Takahashi indices j E { j , } )  

However, for large but finite A, this holds for IAl<<  A, only. [& (A , )  can be obtained 
by application of the Wiener-Hopf ( W H )  method. For large Ak the functions 

& k ( X )  = '$tk(Ak - x )  (A2) 

are solutions of a multicomponent wH-type integral equation 
rcc 

Fourier transformation yields 

1 
[ ' ( w ) U ( w ) ( l +  T ( w ) )  U ( w ) - ' + [ - ( w )  =- 

w + i O  

where [ ' ( U )  = j  dx O ( * x ) c ( x )  eiwx are analytic functions for Im(w)T,,O(O(x) is the 
step function), and 

(-45) 

To solve these equations one has to find a factorisation of the kernel of the above 
equations 

V ( w )  = diag{exp(iwA,), . . . , exp(iwA,)}. 

lim G + ( w )  = lim G - ( w )  = 1 (A6) 
w - m  w - m  

1 + T ( w )  = G ' ( w ) [ G - ( w ) ] - '  

where G ' ( w )  ( G - ( w ) )  are analytic matrix functions in the open upper (lower) half 
of the complex plane and are continuous on the real axis. 

Although there is no constructive method for obtaining such a factorisation for 
general multicomponent WH equations, for a self-adjoint matrix function which is 
continuous and has non-zero determinant on the extended real line (such as (1 + T ) )  
this factorisation is known to exist [26] and because of the symmetries of T ( w ) ,  namely 
T ( w )  = T ( - w )  and T = TT it follows 

[ G + ( - w ) ' ] =  [ G - ( w ) ] - ' .  (A7) 

In terms of these matrices the solution of (A4) is 

1 
[ + ( U )  =- G-(O)[ U ( o ) G + ( w )  U (o ) - ' ] - ' .  

w+iO 

Contour integration gives 

Together with (A6) and (A7), this yields the following relation: 

lim [(o) = lim [zz']. 
\-X 1-x 
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